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Luminescent Optical
Fiber Temperature Sensors

INTRODUCTION

• o in a distributed temperature sensor integrated into an
• n there has been interest m devel p !g ,J..__ _,, ,ho ,,,,tical fiber within or on a structur.alRece fly, em_aomg u, ,-,, ,-,v- d

,...a,.ol 6h_r Such a system would allow .... ._, ....... rature [1-71 Work has alrea y
"vT "_. 7."_"2__.-ao for continuous monitoring ot me matena_ _ t_,,,v,. " emission
matenat to pxuv,u_
begun on the development of a temperature sensor using the temperature dependent
spectra from the lanthanide rare earths doped into crystalline hosts. The lifetime, the linewidth and
the integrated intensity of this emission are each sensitive to changes in the temperature and can

• met One concept for incorporating this phenomena into an optical
rovide a basis for the rmo _: ....... :_nu., _,.tlvo. m terial to the cladding of an optical fiber

Plber based sensor revolves bonding me opu,..,,..7 ........ a fiber by the evanescent wave [6].
and allowing the luminescent light to couple into the the
Experimental work developing this concept has already been reported [7]. Measurements of the

linewidth of Eu3+: Y203, diffused into a fiber,made by Albin clearly show a strong and regular

dependence on temperature over the range of 300 to 1000 K [2,4].

We report here on a study of the temperature dependence of the lineshape of the emission at 611
nm using the data in references [2, 9-12]. We focus attention on understanding the general

behavior of the Eu3+: Y203 system. Building upon understanding of this system we will be able

to establish the physical criterial for a good optical fiber based temperature sensor and then to
examine available data on other lanthanide rare earths and transition metal ions to determine the best

luminescent system for temperature sensing in an optical fiber.

LUMINESCENCE OF Eu 3+: Y203

The Y203 crystal has a cubic structure with unit cell dimension 10.61 ]k [10]. Each yttrium ion

has six oxygen ions as nearest neighbors configured to occupy six of the eight comers of a cube
surrounding the yttrium ion. There are two distinct arrangements of the oxygen around each

vacant oxygen sites are at opposite diagonals of the cube
ttri m site. In one arrangement the two ..... .,, ...... ,,.,, ,.. • in the other arrangement the

Yor_a_ng a high symmetry (centro-symmemc) sue ot _,_--,,,,,,: C_1,

oxygen vacancies are at opposite diagonals of a cube face forming a low symmetry site of

symmetry C s. The triply ionized Europium ion is in a 4f 6 electron configuration and substitutes for

the triply ionized Yttrium ion in either of these two distinct crystallographic sites. There are three of
the low symmetry C s sites for each C3i site. A Europium ion at a C s site will have its degeneracy

fully broken but it will be only partially broken in the C3i site. The energy levels and Stark

splittings for Eu3+:Y203 are well known and correspond to theoretical predictions [8,9]. The

Stark levels for the low lying energy manifolds relevant to this discussion are listed in Table 1.
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Stark

Manifold

7F 0

7F 1

7F 2

7F 3

7F4

7F 5

7F 6

Table 1.

Levels of the 7Fj and 5Dj Manifolds of Eu3+: Y203

(Only the energy levels for the Cs symmetry sites are listed)
(from references 8 and 9)

Energy level (cm "1)

0

199,369,543

859,906, 1379

1847, 1867,1907, 2008,2021, 2130, 2160

2668, 2800, 2846, 3015, 3080, 3119, 3163, 3178, 3190

3755, 3828, 3904, 3938, 4019, 4062, 4127, 4158, 4227

4589, 4611, 4791, 4812, 4925, 4960, 5032, 5045, 5271, 5314, 5459, 5636

5D0 17216

5D1 18930,18954

5D2 21355, 21357, 21396

Our discussion is focused on the characteristics of luminescence in the region of 611 nm; the

possible transitions between Stark levels that could contribute to this luminescence are listed in

Table 2.

Transitions

Manifold

5D 0 -->7F2

5D 2 -->TF6

5D 2 -->7F6

5D 2 -->7F6

Table 2.

Contributing to Luminescence near 611 nm

Transition Wavelength (nm)

611.36, 613.12

609A2, 6i2.63, 613.12

612.56, 613.05

611.10, 611.58

The radiative transitions between the between 5D2 ->7F 6 manifolds are strongly quenched above

room temperature so they would not be expected to contribute the high temperature luminescence;
this has been demonstrated by Klassen et al. [11]. On the other hand one can expect contributions
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from both of the Stark level transitions connecting the 5D0 ->TF 2 manifolds. For the C S

symmetry sites, there are three major Stark levels in the 7F 2 manifold and one in the 5D 0

manifold; these contribute to emission at 611.36, 613.12 and 631.4 nm. As shown in sequel, the

assymetry observed in the spectral shape of the emission near 611 nm line is due to the combined
emission from the nearby transitions at 611.36 and 613.12 rim. There may be additional
contributions to this lineshape from phonon sidebands, however these are not expecrted to be large
since the vibronic coupling to the Y203 lattice has been shown to be weak both theoretically [9]

and experimentaUy [11].

Albin has measured the emission spectra of Eu3+: Y203 in the region of 61 lnm at temperatures

ranging from 323 K to 973 K. These measurements were made on powdered samples thermally
diffused into an optical fiber which was used to collect the emitted light. The temperature

dependence of the linewidth extracted from these spectra is shown in Figure 1. The raw data is fit
to a quadratic expression in temperature. In the following we develop a model for this temperature

dependence.
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Figure 1. Measured values of the linewidth of the 611 nm emission of Eu3+: Y203 from Albin,

reference [5]. Curves indicate a quadratic fit to the data and linear regression fitting to the low and

high temperature regions separately.
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THE Eu 3 + LUMINESCENCE CENTER

The basic phenomena responsible for the temperature dependence of the spectral shape of the
luminescence at temperatures above room temperature can be understood by considering emission

from a single prototypical Eu 3+ luminescent center [ 12, 14]. Both the radiative and non-radiative

processes that take place at a luminescent center can be described by a single configuration
mate which treats all of the vibrational components of each energy level of the optically active

coord" " • ........... -' '--. _'_'"_'n assisted electronic transitions are each
ion as an harmonic oscillator, l__VelS connectcu oy p.,.,.v

nted b arabolic simple harmonic oscillator potentials displaced along the single
represe . Y P • - - • " sumin_ that the force constants for each

nti urauon coordinate as shown m Ftgure 2. As . ,_ . , . ........ . _
_gnic parabola are equal, the two parabolic energy surtaces can oe oescnl:)ea oy me tonowmg

expressions
- q 2

El = 1 kq2 = Slh°_a) (1)

and

Eu = Ezp + S (2)

Where q represents the configuration coordinate and E 1 and E u refer to the electronic energies of

the ground state and excited state respectively. The two parabolas are offset by a distance a. S u and

S I are the number of phonons at emission and absorption center (the Huang-Rees parameters). Ezp

represents the zero phonon energy

The occupation probability for the n th vibrational state of a given manifold is given by

P(n,z) = (1 - z) z" (3)

where,
z = e-_c°/kT .

The emision of a photon with energy hv can occur between the excited state with vibronic quantum

number 1 and the ground state with vibronic quantum number m, where

hv -Ezp _ (1 - m) 'p=
hco

represents the number of phonons involved in the transition. The normalized linestrength is given

by the sum over Frank-Condon factors

Wp "- _ P(m,z) 0p+m IUrn)

m =max{0,-p} (4).

Non-radiative ratescan be determined from the same sum over Frank-Condon factorsand the

electronictransitionrateRelectronic as Rp = RelcctronicWp. In general,itisnot expected thatthe

vibroniclevelswillhave thesame forceconstantsbut the descriptionabove illustratehow a simple

lineshape can be re-constructed.
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Figure 2. Representation of the vibrational and electronic energy levels of a luminescence center in

terms of the configuration coordinate.

LINE BROADENING MECHANISMS

Several different physical mechanisms may contribute to the broadening of the narrow line
emission of the lanthanide rare earths doped into activated crystals [14,15]:

a) There is an inhomogeneous component to the linewidth due to the fact

that the dopant ions experience slighdy different microstrains at each

impurity site. These strains are randomly distributed and they produce a
gaussian lineshape that is only weakly temperature dependent. However _dais
strain broadening is especially critical for this application which may employ

Eu3+: Y203 powder on the exterior of a fiber.

b) There is a contribution due to Raman scattering of phonons by the
impurity ions. This contribution depends upon the Debye temperature of the

host T D and the strength of the coupling between the impurity ion and the

lattice.

c) There is a contribution due to single phonon emission and absorption
which depends upon a separate electron-phonon interaction parameter.
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d) There also may be a contribution from anharmonic interactions between
the impurity ion and the lattice resulting in local (non-propagating) modes.

We have estimated the size of the most important of these effects in order to get an idea of the cause

of the observed temperature dependence of the lineshape.

Frank-Condon Lineshape

First we make a simple arguement for the variation of the linewidth with temperature based solely
on the shape of the harmonic potential in a single configuration coordinate model (the Frank-
Condon factor). At zero temperature the lineshape, in the Condon approximation, is a Gaussian
with linewidth proportional to the amplitude of the zero point oscillations of the excited state. As

temperature rises, higher energy vibrational levels become populated and the corresponding
wavefunctions extend further in configuration coordinate space. The increase in linewidth should

be proportional to this extension of the wavefunction, that is, proportional to the amplitude of a
classical oscillator. The zero point amplitude of a harmonic oscillator with vibrational (phonon)

energy Ep is given by

(5)

where k is the Boltzmann constant. The amplitude of the nth quantum energy level is related to the

zero point amplitude by
A_ =(an + t)g.

The temperature dependence of the linewidth is obtained by summing over the amplitudes of all
harmonic oscillator energy levels, weighted by the probability of their occupancy

oo

E e-n hv&T A2n

2 = n=O

E e-n hv/kT
n--0 , (6)

and thisleadstothefollowingexperssionforthetemperaturedependence oflinewidth

Av(T) = AV(0) (tanh(F_qJ2kT))" {. (7)

This equation describes the change in linewidth due only to temperature induced changes in the
occupation probability of the harmonic energy levels associated with the excited state. Figure3
shows the temperature dependence of the linewidth predicted by Equation 7 for various values of

phonon energy, Ep with the measured values of linewidth are superimposed. Clearly the measured

linewidth increases more rapidly with temperature than Equation (7) predicts. This indicates _at

the lineshape is not determined by the single configuration coordinate picture alone but that other
o.. t work. In the following paragraph we show that the steep change in linewidth with

processes are a . . .__,..._:_. ,1.,,, t of a second nearby Stark level transition. If we
temperature can be explained by mcLuu,,,_ -,,,.,ffec
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force a fit of the measured data to Equation 7 we obtain an unreasonable small value of phonon

energy equal to 0.2 meV (1.6 cm'l).

5

400 500 600 700 800 900 I000

Temperature (K)

10 meV

100 meV

Figure 3 The change in linewidth with temperature as predicted by the broadening of the vibronic
potential energy curve, Equation 7. Superimposed upon these curves are the data from reference 5
normalized to unity at the lowest temperature measured.

Two level Frank-Condon Lineshape

As Figure 3 indicates, the measured linewidth rises much faster than predicted by the broadening
of the configuration coordinate potential curve, Equation 7. One possible source for an additional
contribution to linewidth can come from the emission from a second Stark level transition close to

the 611.36 nm line. From Table 2 we see that there is a 5D 0 --> 7F2 transition at 613.12 nm

which can contribute to emission at 611 rim. To test this idea we calculate the emission from both
of these Stark level transitions. We assume that each line has a Lorentz lineshape which changes

with temperature according to the Frank-Condon linewidth factor given in Equation 7. Thus the

lineshape depends upon the phonon energy Ep and intrinsic linewidth A_, for each transition. The

strength of the transition can be calculated from Wp given by Equation (4) with p taken to be zero.

We use p equal to zero because the separation between the two lines ( 56.8 era "1) is much smaller

than the maximum phonon wavelength for Y203 ( about 550 cm-1).

The results of this calculation of the lineshape for the 611 nm emission are shown in Figure 4 for

two values of temperature.The results are in good quantitve agreement with both the general shape
of the emission line and its change with temperature. It is difficult to render a accurating fitting with
the small amount of data available. However, the qualitaitive agreement does suggest that other

mechanisms can influnece the temperature dependence of emission and that these enhnacements

may provide the basis for sensitive temperature sensors. Mechanisms which can provide such
enhancements include the cooperative emission from two close Stark level transitions, thermal
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quenching of manifolds which feed the manifold under observation and thermal equilibrium set up

by energy transfer between manifolds.

0.5

•_ 0.4

0.3

0.2

ft.
0.1

_ 0

r=3

605 610 615 620

Wavelength, nm

,_ 0"5IT"_ 0.4

"" 0 3
,_ °

t,., 0.9.

0.I

_ 0

= 973 K

605 610 615 69-0

625

69-5

Wavelength, nm

Figure 4. The calculated lineshape for the 611 nm emission assuming that two nearby Stark level
transitions (611.36 nm and 613.12 nm) contribute. Each level has a Lorentz lineshape which

changes with temperature according to the Frank-Condon factor (Equation 7).

Single phonon linewidth

The previous calculations assumed that a single phonon energy Ep was available to broaden the

electronic transitions but that many of these phonons of this energy could participate in the

transition. We now consider a process involving a single phonon of energy h_0 to calculate the

temperature dependence of the linewidth of the 611.4 nm emission. We can fit the measured
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linewidth using a model of the electron-phonon interaction involving single phonon processes.
From McCumber and Sturge [12] the single phonon contribution to linewidth has the form

'C,212__..Veo3 (_Wk.T _1)-'
AV phonon--" 2_ V5

where C 12 is the matrix element for the transition and gives the strength of the electron-phonon

coupling, V is the volume of the crystal, v is its speed of sound (assuming the transverse and

longitudinal speeds are equal), and h_ is the single phonon energy.

The data taken by Albin can be fit to the following expression,

Av = a + b o)3 (exp(h_/kT) -1 )-1. (8)

with a = 0.0434, b = 0.0000135 and Ep = ho3 = 68.7 meV (554 cm-1). The single phonon energy

is within the phonon spectrum for this host and is in fact close to the value found in Reference 11

for the phonon responsible for quenching the 5Dj manifolds. This fit to Albin's data is shown in

Figure 5. This fit is very good.

5

4

400 500 600 700 800 900 1000

Temperature, K

Figure 5. Fit of the linewidth data from Reference 2 to Equation 8.
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CONCLUSIONS

We have initiated a study of rare earth luminescence as part of an effort by NASA to develop a

temperature sensor that can be integrated into a optical fiber. This report focuses on luminescence

from Eu3+:Y203 We have described the physical characteristics of the Y203 crystalline host and

the Eu 3+ luminescence center. We have examined the temperature dependence of the linewidth of

the 611 nm luminescence from Eu3+:¥203 obtained from powder thermally diffused into a fiber

measured by Albin [2]. The temperature dependence of the the 61 lnm luminescence was shown to
be stronger than that expected from the Frank-Condon principle alone. The temperature

dependence of the lineshape can be qualitatively explained by a model using emission from two
nearby transitions. A good fit to the measured temperatue dependence of linewidth is obtained

using a single phonon model.

The observation that the temperature dependence of linewidth is more rapid than expected from a
Frank-Condon model and the conjecture that some combined emission is responsible for this
enhanced dependence suggests that there may be other instances of enhanced emission that would
be useful in sensing. Such mechanisms include the cooperative emission from two close Stark
level transitions, thermal quenching of the manifolds which feed the manifold under observation

energy transfer between manifolds. A fruitful line of
and thermal equilibrium set up by rare earth energy levels for patterns that might give such
investigation would be to search the
enhanced emission.
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